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Abstract 

Bearings are one of the critical components in rotating machinery. The need of an easy and effective fault diagnosis technique 
has led to the increasing use of motor current signature analysis (MCSA). Bearing faults in the mechanical system run by an 
induction motor causes change in its stator current spectrum. The faults in the bearings cause variations of load irregularities in 
the magnetic field which in turn change the mutual and self inductance causing side bands across the line frequency. The 
objective of this paper is to detect bearing faults (outer race fault) in a mechanical system using motor current signature. Fast 
Fourier Transform (FFT) is initially employed for a first comparison between a healthy and a defective bearing. Six wavelets are 
considered out of which three are real valued and remaining three are complex valued. Base wavelet has been selected on the 
basis of wavelet selection criteria - Maximum Relative wavelet energy. Then, 2D wavelet scalogram has been used for the 
detection and occurrence of outer race faults of various sizes in ball bearings of mechanical systems using motor current 
signatures of induction motor. 
© 2014 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of the Gokaraju Rangaraju Institute of Engineering and Technology (GRIET). 
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1. Introduction 

Motor current signature analysis has come up as an important tool in the area of fault diagnosis in past two and 
half decades. Vibration-based diagnostics has always been considered reliable and easy to use. Although, various 
techniques used for fault detection mentioned in the literature are vibration monitoring (Ruqiang and Gao, 2006), 
acoustics emission (Zhan and Makis, 2006), wear debris analysis (Ebersbach et al., 2006) , temperature monitoring 
(Nandi and Toliyat, 1999). But in the cases where the process monitoring is to be done in nearly in-accessible 
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locations or remote places for equipment like induction motor drives,  centrifugal pumps (below the ground level), 
cryogenic pumps etc., MCSA has emerged as a highly sensitive, selective and cost-effective tool. Some of the other 
applications of MCSA are in the area of petrochemical refineries, offshore oil and gas production platforms, mining 
industry, paper mills and car industry. 

MCSA has been extensively used in the condition monitoring of induction motors (faults like supply problems, 
inter-turn faults in the stator windings (Filippetti et al., 1996), rotor-bar and end-ring breakings (Williamson and 
Smith, 1982), faults in the bearings (Stack et al., 2004) and air-gap eccentricity asymmetries). Also, some studies 
have emphasized the use of MCSA for detection of faults in compressors, pumps [Ref]. Extensive work has been 
carried out for the detection of the bearing faults (viz- inner race, outer race and ball faults) fitted in the induction 
motor (Djeddi et al., 2007; Trajin et al., 2008; Immovilli et al., 2010; önel et al., 2005).   

Shadely et al. (1992) and Ran et al.(1996) in their respective works monitored starting current transients for 
studying effect of torsional vibration on motor current signature analysis. Eren and Devany (2001) used starting 
current transients for detecting motor bearings damage by using wavelet analysis. In one of the studies by Schoen 
and Habetler (1995), it was reported that the presence of broken rotor, and eccentricity in rotor and stator of an 
induction motor result in side-bands of electric supply line frequency. The side-bands are functions of the slip in the 
induction drive. Online monitoring of induction motor was done by Schoen et al. (Schoen et al., 1995b) and Riley et 
al. (1997). Yacamini et al. (1998) observed from their experiments that each component of load torque has side-
bands across the supply line frequency and they had also applied wavelet transform. 

The aim of the present work is to diagnose the bearings installed in the load machines to be run by an induction 
motor. The bearings of the induction motor are assumed to be healthy. Fast Fourier Transform (FFT) is initially 
employed for a first comparison between a healthy and a defective bearing. Six wavelets are considered out of 
which three are real valued and remaining three are complex valued. Base wavelet has been selected on the basis of 
wavelet selection criteria – Maximum Relative wavelet energy and Maximum energy to Shannon entropy ratio. 
Then, continuous wavelet transform (CWT) has been used for the detection and occurrence of outer race fault in ball 
bearings of mechanical systems using motor current signature of induction motor.  

The organization of the paper in the subsequent sections is as follows. In Section 2, the details of experimental 
setup have been provided, followed by explaining the outer race frequency fault and its characteristic frequency in 
the system. The different sensors with the corresponding instrumentation and various tests planned are also 
discussed in this section. Section 3 presents a brief introduction. In Section 4, the time domain current signals, their 
frequency spectrum and the results of the proposed technique used have been demonstrated and discussed. Also, a 
comparison of vibration and MCSA fault signatures for the outer race fault has also been presented in this section. 
Section 5 presents the conclusions. 

2. Experimental setup and procedure 

The experimental set up consists of a two-pole three phase 1 H.P. (0.75 kW) induction motor coupled to a mild 
steel shaft of 25 mm dia mounted on two identical deep groove ball bearings fixed in two plummer blocks. The 
schematic of the experimental setup is shown in Fig 1. The induction motor is coupled to the shaft with a torsionally 
stiff spring coupling. A variable frequency drive (VFD) has been attached with the induction motor in order to 
adjust the motor speed which can be varied from 0 to 3600 rpm. The induction motor bearings are healthy. A pair of 
reverse dial gauges is used to align the rotor shaft with the motor end shaft within 10 microns. For the present study, 
the bearings in which the faults are to be detected using MCSA are installed in the mechanical system. The faults in 
the bearings installed in the mechanical system were created artificially by electrical discharge machining. The ball 
bearing used for this study are 6204-ZZ series, make SKF. Specifications are mentioned in table 1.  

 
Table 1. Specifications of 6204 2Z SKF make ball bearing 
Number of balls (Nb) 8 
Shaft speed (ωinner) 35 Hz 

Ball diameter (d) 7.938 mm 
Pitch diameter (D) 33.5 mm 

Contact angle of bearing 0° 
For measuring the input current waveform of the three phases of the induction motor, three Tektronix A622 Hall 

Effect current probes were used. Vibration monitoring was done with an IMI make accelerometer, 608A11 
(sensitivity of 100 mV/g), mounted on a plummer block (as shown in figure 2). The outputs from the accelerometer 
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and current probes were recorded in a 4-channel data acquisition system of National Instruments (NI 9234 card and 
NI cDAQ -9174 chassis) attached with a PC with NI Lab View software. Raw signal data from the sensors are 
stored for future processing. The rotation speed of the motor was measured with a built-in tachometer with LCD 
display and analog output.  A belt and pulley arrangement was mounted on the free end of the shaft for mechanical 
loading the test rig bearings as shown in figure 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Line diagram of the experimental setup. 

Two sets of experiments were conducted, first with healthy bearing and second with the defective bearings 
installed in the mechanical system with and without mechanical loading. Figure 2(a) shows a picture of bearings 
with single outer race defect along with a healthy bearing installed in the mechanical system. The disassembled view 
of 6204-ZZ bearing is shown in figure 2(b). 65536 samples with a time record of 5.12 s with a sampling frequency 
of 12.8 kHz were taken for each bearing. The system was run from 5 Hz - 60 Hz with an increment of 5 Hz. In the 
present work, the data for only 35 Hz speed for 3 mm bearing fault defect has been presented. 

 
 

 
 

 

 

 

 

 

Fig. 2. (a) A healthy bearing (B1) and faulty bearing (B2, 2 mm hole drilled through the outer race) and; (b) Disassembled view of 6204-2z.
  

Schoen and Habetler (1995) in their work have shown that with load fluctuations, a change in speed occurs thus 
changing the per unit slip, which subsequently causes changes in side-bands across the line frequency (fe). The faults 
introduced in the parts cause anomaly in the magnetic field, which is responsible for changing the mutual and self 
inductance of motor causing side bands across line frequency. 

If there is a fault on the inner/outer raceway, the rolling element (balls) will pass over the defect point/area, 
which produces impulses while rotating on the machine at a given frequency. This frequency is known as a 
characteristic frequency, fbng which is associated with different type of bearing faults. It is because of the periodicity 
of occurrence of the abnormal physical phenomenon related to the existence of the fault (Djeddi et al., 2007). The 
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characteristic frequencies are functions of the bearing geometry and the mechanical rotor frequency fr. It has been 
established from literature that the characteristic stator-current fault frequencies are genuine fault indicators for 
bearing single-point defects (Schoen et al., 1995a). The outer race fault frequencies considered for vibration (fbng) is 
given as (Schoen et al., 1995a): 

 
1 cos

2bng b inner

d
Df N   (1) 

Schoen et al. [30] diagnosed an induction motor with faulty bearings. They observed side-bands across the line 
frequency in the motor current spectrum because of the characteristics frequencies of vibration signatures of ball 
bearings. This is due to the fact that any damage in bearing will cause a change in air gap eccentricity and hence will 
be reflected in current spectrum by the following equation: 

 orf s bngf f m f   (2) 

where, Nb = number of balls, ωinner = shaft speed = running speed, d= ball diameter ; D= pitch diameter; α= contact 
angle of the bearing; m = integer 1, 2, 3, .... 

3. Continuous wavelet transform 

Over the past some years, wavelet transforms  have become one of the fast-emerging and effective mathematical 
and signal processing tools for its distinct advantage in analyzing signals particularly the transient ones. Using 
different window functions through dilation and translation of a prototype function called mother wavelet; the WT 
can provide multi-resolution (multi-scale) analysis of a signal. Hence it can extract time-frequency features of a 
signal effectively, which are obscured in the traditional Fourier Transform analysis. The limitation of Fourier 
Transform can be seen from the fact that the integral transform is applied on the signal globally and hence in the 
process time localization of the spectral component is not highlighted and is lost if the transient decays quickly. 
Wavelet transform is performed by a localized waveform known as wavelet. A wavelet function is manipulated 
through a process of translation (i.e. movements along the time axis) and dilation (i.e. spreading out of the wavelet) 
to transform the signal into another form, which “unfolds” it in time and scale. The continuous wavelet transform 
(CWT) of x(t) with respect to a mother wavelet is defined as (Addison, 2002): 

 

 ( , )
1( )a b

t bW x t dt
aa

  (3) 

   
As seen in the above equation, the transformed signal is a function of two variables, a and b, the scale (dilation) 

and location (translation) parameters, respectively. The asterisk indicates that the complex conjugate of the wavelet 
function is used in the transform. If wavelet function is defined at scale a and location b as: 

 
             

  ( , )
1( )a b

t bt
aa

 (4)  

From equations 1 and 2, 
 

 ( , ) ( )a bW x t t dt   (5) 
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Unlike the discrete wavelet transform, the CWT can operate at every scale, from that of the original signal up to 
some maximum scale by trading off need for detailed analysis with available computational power. The CWT is also 
continuous in terms of shifting: during computation, the analyzing wavelet is shifted smoothly over the full domain 
of the analyzed function (Misiti et al., 2009). Several families of wavelets are used for different applications such as 
Haar, Daubechies, Biorthogonal, Coiflets, Symlets, Meyer, Morlet and Mexican Hat wavelet etc. Based on nature of 
wavelet function (t), wavelets can further be classified in two categories: real valued and complex valued wavelets.  

Relative wavelet energy (RWE) is considered as time-scale density that can be used to detect a specific 
phenomenon in time and frequency planes. RWE gives information about relative energy with associated frequency 
bands and can detect the degree of similarity between segments of a signal. Therefore, the wavelet and 
corresponding scale which maximizes the relative wavelet energy, can be considered for fault diagnosis. The energy 
at each resolution level n, will be the energy content of signal at each resolution is given by equation. The total 
energy can be obtained by 

 
2

, ( )total n i
n i n

E C E n   (6) 

Then, the normalized values, which represent the relative wavelet energy, is the energy probability distribution, 
defined as  (Rosso et al., 2001), 

 n
n

total

Ep
E

  (7) 

where Σn Pn = 1, and the distribution Pn, is considered as a time-scale density. 
A typical 2D wavelet plot shows absolute values of these coefficients as a function of the dilation and translation 

parameters. In the scalogram, the x-axis denotes the time parameter whereas the y-axis indicates the scale that is 
having a reciprocal relationship with the frequency. The color intensity in the plot of these two parameters (in case 
of 2D scalogram) is proportional to |Ca,b|2, the absolute value of the wavelet coefficient. The scalogram indicates 
how energy in the signal is distributed in the time–frequency plane. The wavelet 2D plot shown subsequently in this 
section has scale a which is inversely related to the frequency value. A low scale value indicates a high frequency, 
whereas the large scale is indicative of the low frequency. Though there is no exact mathematical relation for this, 
with approximation we may write from (Misiti et al., 2009):  

  c
a

FF
s

  (8) 

where, Fa is the pseudo-frequency (for the scale value s), s the scale, Fc the central frequency of mother wavelet 
in Hz and Δ the sampling period. Central frequency of the Morlet wavelet is 0.8125 Hz. In this study, the sampling 
period is taken as (1=12800) s. 

4. Results and Discussion 

Induction motor acts as an effective transducer for load variations within itself (i.e. for winding faults, bearing 
faults etc) and also outside it i.e. for load machine attached to it. It can only be ascertained by comparing a motor 
current signature with a vibration signal acquired from an accelerometer mounted on the same machine. With this 
motivation, the present work study has been done specifically only for the detection of a faulty bearings (an outer 
race fault) in rotating machinery using motor current signature analysis. The stator current response acquired at 35 
Hz for the test bearing is shown in Fig. 3.  

The running frequency (1X = 35 Hz) and its harmonics (2X, 3X, ...) are observed in the frequency spectrum of 
stator current signature of test bearings (healthy and faulty) in comparison to the healthy bearings (refer Fig. 3). The 
amplitude of the 1X and its harmonics for faulty bearings are more than the healthy bearings in the current spectrum. 
It should be noted that the vibration effect on the stator current is due to the displacement of the rotor with respect to 
the stator. The fault frequency determined by using equation 2 is 141.7 Hz which is marked in Fig.4 as ORF. It is 
observed from the Fig.3 that the current signature analysis is capable of detecting the bearings faults which are 
installed in the load machine run by an induction motor. 



176   Sukhjeet Singh et al.  /  Procedia Materials Science   6  ( 2014 )  171 – 177 

The choice of wavelet for extracting the fault has to be selected. For this, six wavelets are considered out of 
which three are real valued and remaining three are complex valued. Base wavelet has been selected on the basis of 
wavelet selection criteria - maximum relative wavelet energy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Stator current spectrum of a healthy (B1) and a faulty bearing (B2) at 35 Hz 

 
Using MatLab, maximum relative wavelet energy is calculated for a healthy and faulty current signal. Out of six, 

wavelets, Morlet and complex Morlet wavelet have got the higher value in real and complex valued respectively. 
Out of these two, Morlet wavelet has the higher value, so Morlet is selected as a base wavelet. 

Once the base wavelet has been marked, 2D scalogram for healthy and a faulty bearing current signal have been 
drawn for 0.1 sec in the scale range of 1-300. It has been mentioned in the literature that frequency is inversely 
proportional to the scale value. It is to be noted that running harmonic of bearings is 35 Hz which is equivalent to 
scale value of 293 by using the equation 4. A difference is clearly visible around scale value of 293 in Fig.4 (a) and 
Fig.4 (b). 

It is also seen that the |Ca,b|2 of a faulty bearing is higher than the healthy bearing. It has been shown in Fig.4 (a) 
and Fig. 4 (b) by marking arrows a, b and c.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4. (a) 2D wavelet scalogram of stator current spectrum of a healthy bearing (B1) 35 Hz, (b) 2D wavelet scalogram of stator current 
spectrum of a faulty bearing (B2) 35 Hz in the scale range of 1-300. 

Conclusions 

The experimental test data presented in this paper confirm that for a mechanical system, the bearing faults outside 
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the induction motor can be detected by monitoring the magnitudes of the induction motor current harmonics at 1x 
and sidebands coming around the running frequency, similar to the analysis of the induction motor current 
harmonics of the induction motor (Schoen et al., 1995a). Analysis of these frequencies makes it clear from the 
spectrum that the faults appear at pre-defined frequencies. A continuous increase of side bands around the running 
speed also gives an indication of the faulty bearing, because it has been ensured in the system that no electrical fault 
exists in the system except the bearing fault outside the induction motor. Using 2D wavelet scalogram, outer race 
faults of the bearings of the load machine have been extracted from the time domain signals of the current signature. 
When an outer race fault is introduced into the system, the variations of the amplitude of running harmonics and 
their side bands have been noticed in the domain as well as in the 2D wavelet scalogram. 
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